

Site description

ocation: South-Central Indiana, 15 miles from

Bloomington

Climate:

Mean precipitation: 1013 mm

Mean temperature: 11.2 C

levation: 275 m above sea level

opography: Ridge/ravine with relief < 60 m. Drops 90

n in 4 km

Ecosystem characteristics:

- Mixed hardwood (dominant species: tulip poplar, white oak, red oak, sassafras, and sugar maple)
- Secondary growth (stand age 60-90 years)
- Canopy height: 27 m

nstrumentation

r instrumentation:

Free-standing tower, height: 46 m

Closed-path gas analyzers (Li-7000) with intakes at 46, 34 and 2m

CSAT-3 at 46, 34 and 2m

PAR sensors: 46, 22, and 1.8 m

4 component radiation (CNR1) at 46, 34 and 2m

Total incoming shortwave radiation (28, 14, and 2 m)

Cloud height (ceiliometer)

Phenocam site

COSMOS soil moisture site

- Below Canopy (BC) sites:
 - Air T/RH
 - Wind cup and vane
 - Soil T, heat flux and moisture
 - PAR, Kdown and Q*
- Biological measurements:
 - Dendrometer bands
 - Sap flow
 - Leaf photosynthesis, water potential
 - Soil CO₂ efflux (automatic and manual chambers), temperature, and moisture
 - Litterfall, leaf C and N content

eam

- Kim Novick (Flux measurement PI)
- Rich Phillips (Soil measurements and experiments, Co-PI)
- Edward Brzostek (Biometric and belowground)
- Ben Sulman (Flux data processing and analysis)
- Tyler Roman (Technical maintenance and data collection)
- Steve Scott (Field and instrumentation scientist)
- Danilo Dragoni ran site until 2012

Research highlights

Continuous flux measurements since 1998: Observed long-term trend in NEP (Dragoni et al 2010)

Water fluxes and drought response

- Scaling leaf and soil water potential to canopy gas exchange (2011-present)
- Sapflow (2011-present)
- Effects of 2011 and 2012 droughts

Below-ground C and N cycling

- Differences in soil carbon cycling and microbial activity associated with mycorrhizal associations (Phillips et al 2013)
- Extensive soil CO₂ efflux measurements and manipulations (girdling, root exclusion, N addition)

N fluxes and aerosol deposition

Data processing

a management:

Data from the flux instrumentation and other automated measurements are automatically transferred to a university-hosted server every day

Data plots are automatically produced every day and linked to a web interface to allow easy checking for equipment problems

Remote login capability at site computers

calculation:

Matlab code base

Basic QA/QC (spikes, unreasonable values)

Flux processing as often as necessary

Gap-filling and partitioning annually

Short-term goals

- Continue to produce high-quality, reliable data (through PI transition)
- Establish new collaborations
- Expand sap flow measurements and continue to investigate species composition effects and scaling
- Potential site comparison with Coweeta Hydrologic Lab (similar species but much wetter climate)

What do we want from Ameriflux?

Easier format for BADM

- Excel is a difficult format for hierarchical data
- Challenging to read/write Excel format data from Matlab/Python/R etc.
- Large number of fields that won't be filled is difficult for both submitters and users of data

Easy data submission interface

Facilitation of collaboration

Do QA/QC systems include LE?